skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Calabrese, Julia E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unfortunately, most of the world is experiencing a shortage of employees for careers related to science, technology, engineering, and mathematics (STEM). Few students express interest in pursuing these fields, indicating that this shortage has no clear end. Thus, researchers and educators are grappling with ways to increase student interest in STEM fields. One suggestion is to include four critical curricular design features: (1) providing choice or autonomy in learning, (2) promoting personal relevance, (3) presenting appropriately challenging material, and (4) situating the investigations in socially and culturally appropriate contexts. In this mixed-methods study, we explore whether students recognize the incorporation of these curricular design features within a given curriculum and in what ways. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. While our world consistently presents complicated, interdisciplinary problems with STEM foundations, most pre-university curricula do not encourage drawing on multidisciplinary knowledge in the sciences and engineering to create solutions. We developed an instructional approach, Iterative Science and Engineering (ISE), that cycles through scientific investigation and engineering design and culminates in constructing a solution to a local environmental challenge. Next, we created, revised, and evaluated a six-week ISE curricular program, Invasive Insects, culminating in 6th–9th-grade students building traps to mitigate local invasive insect populations. Over three Design-Based Research (DBR) cycles, we gathered and analyzed identical pre and post-test data from 554 adolescents to address the research question: what three-dimensional (3D) science and engineering knowledge do adolescents demonstrate over three DBR cycles associated with a curricular program following the Iterative Science and Engineering instructional approach? Results document students’ significant statistical improvements, with differential outcomes in different cycles. For example, most students demonstrated significant learning of 3D science and engineering argument construction in all cycles—still, students only significantly improved engineering design when they performed guided reflection on their designs and physically built a second trap. Our results suggest that the development, refinement, and empirical evaluation of an ISE curricular program led to students’ design, building, evaluation, and sharing of their learning of mitigating local invasive insect populations. To address complex, interdisciplinary challenges, we must provide opportunities for fluid and iterative STEM learning through scientific investigation and engineering design cycles. 
    more » « less